All about dinosaurs, fossils and prehistoric animals by Everything Dinosaur team members.
16 09, 2014

Closing Date for Name a Dinosaur (T shirt Competition) Approaches

By |2023-03-16T14:05:55+00:00September 16th, 2014|Dinosaur Fans, Everything Dinosaur News and Updates, Press Releases|0 Comments

Dinosaur T-shirt Competition Closes on Friday 19th September (2014)

Just a few more days to go, but there is still time to enter Everything Dinosaur’s “Name the Dinosaur on our Exclusive T. rex T-shirt Competition”, seriously, we are going to have to think of easier titles.  Anyway, the contest closes on Friday 19th September.  PLEASE NOTE THIS COMPETITION IS NOW CLOSED.

Back on August 22nd, Everything Dinosaur introduced a little contest to celebrate the introduction of the company’s exclusive range of dinosaur themed T-shirts.  We called it our “T-errific, T-yrannosaurus, T-easer, T-shirt competition (there we go again with the long titles).  Our “Apprentice Palaeontologist” tee featured a very cute baby Tyrannosaurus rex.  It even held in its claws a geology hammer, very sweet, but we did not have a name for this little critter.  That reminds us, thanks to Sandra and Mary for their suggestion of “crittersaurus”, this name has been added to our competition entries.

Cute Tyrannosaurus rex Baby Needs a Name

Think of a name for me to win a T-shirt!

Think of a name for me to win a T-shirt! Dinosaur themed clothing for children.

Picture credit: Everything Dinosaur

To view Everything Dinosaur’s dinosaur themed clothing for children: Dinosaur themed clothing for children.

Entering the competition is really easy, remember it’s a chance to win a dinosaur themed T-shirt for your own budding palaeontologist, just “Like” Everything Dinosaur’s FACEBOOK page, then comment on the picture of the baby dinosaur design on our red T-shirt (as seen above, the same picture will be posted up on our Facebook page today, so that it is easy to find).  It is a very friendly looking “Apprentice Palaeontologist”, our little dinosaur just needs a name.

Don’t forget, to enter, just visit Everything Dinosaur on FACEBOOK  and “like” our page and leave a suggested name for our baby dinosaur by adding a comment to the baby dinosaur’s picture.

Everything Dinosaur on Facebook

Click the logo to visit our Facebook page and to give our page a "like".

Click the logo to visit our Facebook page and to give our page a “like”.

Everything Dinosaur on FACEBOOK: “LIKE” Our Facebook Page and Enter Competition.

We will draw the lucky winner at random after the name caption competition closes this Friday that’s  Friday 19th September 2014.  Good luck to everyone taking part.

Full terms and conditions, the competition rules and so forth can be found here: Dinosaur T-shirt Competition Extra Information.

PLEASE NOTE THIS COMPETITION IS NOW CLOSED

15 09, 2014

Pterosaur Named after Avatar Dragon

By |2023-03-16T14:03:39+00:00September 15th, 2014|Dinosaur and Prehistoric Animal News Stories, Dinosaur Fans, Main Page|0 Comments

Ikrandraco avatar – New Species of Cretaceous Pterosaur Described

An international team of palaeontologists have described a new species of flying reptile that lived in what is now China during the Cretaceous period, about 120 millions years ago, and named it after the flying dragon-like creatures from the 2009 movie blockbuster directed by James Cameron – Avatar.  The fossils, which have both been laterally compressed, were found at two separate sites, around fifteen miles apart, although one is smaller than the other, they have both been assigned to a single new species – Ikrandraco avatar, the name translates as “Ikran dragon from Avatar”.

Ikrandraco avatar

One of the Newly Described Pterosaur Fossils

White scale bar =

White scale bar = 5cm.

Picture credit: Scientific Reports/Xiaolin Wang et al

Both fossils come from the Jiufotang Formation of north-eastern China (Liaoning Province), although the exact stratigraphic location for both specimens has been difficult to determine.  The larger of the two specimens indicates a wingspan in excess of 2.4 metres, making this flying reptile slightly larger than a Golden Eagle.  The lower jaw had a distinct, semi-circular crest on its anterior portion, it has been suggested that a large “hook” at the back of this structure helped to support either an enlarged throat or a pouch, broadly similar to that seen in extant Pelicans.

A Joint Chinese and Brazilian Research Team

The joint Chinese and Brazilian research team that studied the fossil material and published the scientific paper on the new discoveries, propose that this pterosaur probably fed on small fish.  It may have flown over the water catching prey by skimming its lower jaw into the water.  Once the jaw connected with a fish, it snapped shut and the fish was stored in the throat pouch prior to swallowing.

This type of feeding, a skimming over the water surface to collect fish approach has been proposed before for members of the pterosaur family.  To read an article written by Everything Dinosaur team members back in 2007, click on the link here: Pterosaur Feeding Habits – Could they Skim Surface Waters for Fish?

New Pterosaur Species

Dr Alexander Kellner of the Federal Univervisty (Rio de Janeiro, Brazil), one of the senior authors of the academic paper and an authority on Cretaceous pterosaurs commented:

“Ikrandraco didn’t have a crest on the top of its elongated head as many pterosaurs did.  Behind the lower jaw crest was a hook-like structure that appears to have been the anchor point for the throat pouch.”

The Jiufotang Formation is a member of the extensive Jehol Group and scientists have been able to build up an detailed picture of the environment that existed in this part of the world in the Early Cretaceous.  Although the exact age of the Jiufotang Formation is still debated, most observers now believe that the majority of the strata was laid down in the Early Cretaceous (Aptian faunal stage).

Early Cretaceous Pterosaur

A spokesperson from Everything Dinosaur stated:

“It is now thought that the highly fossiliferous rocks of this part of the world were laid down around 120 million years ago.”

Ikrandraco avatar exhibits a number of anatomical characteristics that suggest it was a piscivore.  For example, the teeth in the jaw are small, sharp and pointed, ideal for grabbing and holding slippery fish.  The unusual blade-like crest on the lower jaw reminded the scientists of the crests seen on the dragon like creatures in the 2009 movie Avatar.

Most flying reptile fossils have been found in marine strata.  However, over the last twenty years or so an increasing amount of pterosaur fossil material has been found in rocks that were laid down inland.  A number of different pterosaur types co-existed in this part of China around 120 million years ago, intriguingly, these reptiles shared the air with a large number of primitive, enantiornithine birds.

A Tropical Paradise

The habitat was a tropical paradise, with verdant forests and a great many, large bodies of freshwater that teemed with fish.  Fossils found in this region include feathered dinosaurs (saurischian as well as ornithischian), early mammals, frogs, turtles, fish and birds.

Commenting on the habitat, Dr Xiaolin Wang of the Chinese Academy of Sciences, a co-author of the scientific paper stated:

“It [Ikrandraco] lived in a warm region teeming with life that included feathered dinosaurs, birds, mammals and frogs along with a variety of trees and other plants.”

An Artist’s Impression of Ikrandraco avatar (Early Cretaceous of North-eastern China)

A flock of Ikrandraco Pterosaurs "fishing".

A flock of Ikrandraco Pterosaurs “fishing”.

Picture credit: Chuang Zhao

Examining Skull and Jaw Crests in the Pterosauria

Of the 130 or so genera of pterosaur described to date, a  number of them are known to have had skull or jaw crests.  These crests were either made of bone or formed by a combination of bone and soft tissue.  However, Ikrandraco avatar is unique in that it only had a crest on its lower jaw (mandible).  There is no evidence of a crest on the skull or upper jaw.  Up until now, blade-like crests were known exclusively in the Anhangueria family and in Cimoliopterus cuvier with such crests also noted in Ludodactylus sibbicki (although the evidence of a blade-like crest in this species is debated).

The researchers also note that Cearadactylus atrox (an ornithocheirid from Brazil), also possessed a crest, but only on the front portion of the upper jaw (the premaxilla).  The crest configuration of a crest on the skull but none on the mandible is much more common in the Pterosauria.  In essence, skull crests are far more common than crests on the jaws and a single, lower jaw crest in a species was unheard of until Ikrandraco came along.

The Second Specimen of Ikrandraco avatar

Scale bar = 5cm

Scale bar = 5cm.

Picture credit: Scientific Reports/Xiaolin Wang et al

The photograph and line drawing above shows the second referred specimen of I. avatar.  The crest on the lower jaw with its distinctive “hook” at the back (labelled dcr – dentary crest) can clearly be made out.

Closely Related Species

As the specimens were found around fifteen miles apart, it could be that these two fossils represent different, but closely related species.  However, the researchers discounted this as both specimens were preserved in a left lateral view and although flattened, the team did not record any observable anatomical differences.  Both specimens revealed evidence of a unique, hook-like structure at the back of the blade-like crest.  This could have served as an anchor point for soft tissues that made up either an extended throat or a pouch.

The presence of throat sacs (pouches) in pterosaurs has been proposed on numerous occasions.  The suggestions have been made for Late Jurassic species from the famous Solnhofen deposits of southern Germany.  It has been suggested that both Rhamphorhynchus and Pterodactylus had pouches.  In all previously described cases, the pouch starts at the posterior ventral part of the mandible and extends until the level of the third or fourth neck bones (cervical vertebrae).

A Pouch Like a Pelican?

Due to the difficulties of preservation of such structures, their properties, size and shape are disputed.

Some palaeontologists have proposed that these pouches were similar to those seen in extant Pelicans, others have used the more neutral term of “loose extensible skin”.  These protagonists argue that this gullet structure might have helped them swallow larger prey items whole, as seen in modern day Ostriches, for example.

It is interesting to note that the inspiration for the scientific name came from the movie Avatar. Next year sees the release of Jurassic World, the fourth movie in the extremely successful Jurassic Park franchise.  Although a closely guarded secret, the film is very likely to include a super-sized, apex predator with a large number of teeth.  We at Everything Dinosaur confidently predict that whatever the film makers come up with, it will one day be the inspiration behind the naming of another prehistoric animal that is new to science.

For scale models of pterosaurs and other Early Cretaceous prehistoric animals: CollectA Deluxe Pterosaur and Prehistoric Animal Models.

14 09, 2014

Feedback from Everything Dinosaur Customers

By |2023-03-16T14:02:38+00:00September 14th, 2014|Dinosaur Fans, Everything Dinosaur News and Updates, Photos of Everything Dinosaur Products, Press Releases|0 Comments

Customer Says Hi and Thank You

We are very lucky to have some amazing customers and we really enjoy learning all about the adventures our dinosaur toys get up to.  The other day, amongst the very many complimentary emails we received about our customer service, there was one from dad Kevin, who wrote to us about his young son Ted.

Everything Dinosaur

It seems that Ted is a budding palaeontologist and he just loves the dinosaur models that came from Everything Dinosaur.

Kevin wrote to say:

“I recently made an order of about five dinosaurs from you.  Ted’s growing obsession with dinosaurs led me to your site and I was impressed by the quantity, quality and value for money of the models that you offer.  I was thoroughly impressed by your service, the dinosaurs really are top quality and not only that but they arrived fast, nicely packed and came with info sheets that were a pleasant surprise too.”

Ted Ensuring that his Diplodocus Gets a Good Feed

Young Ted knows that Diplodocus was a herbivore.

Young Ted knows that Diplodocus was a herbivore.

Picture credit: Dad (Kevin)

Customer Feedback

It’s always a pleasure to hear from our customers.  We receive a lot of feedback from parents, teachers, guardians, museum staff – all sorts of people.  We genuinely try and help all that we can.

Kevin went onto add:

“The main purpose of this email, was to thank you and to share with you some of the joy your products have brought us all.”

We are grateful to Kevin and his family for sending us a splendid picture of young Ted making sure his Diplodocus gets plenty of food to eat.  Kevin commented that thanks to his dinosaurs, he was learning all about what different animals eat.  An understanding of animals, plants and learning about food chains is part of the national science curriculum for Key Stages 1 and 2 for England.  Dinosaurs as a teaching topic does help enthuse and engage the minds of young children.

To view the enormous range of dinosaur and prehistoric animal models available from Everything Dinosaur’s award-winning website: Prehistoric Animal and Dinosaur Models.

13 09, 2014

Ancient Mammal Named after Mick Jagger

By |2023-03-16T13:59:48+00:00September 13th, 2014|Dinosaur and Prehistoric Animal News Stories, Main Page|0 Comments

Jaggermeryx naida – “Jagger’s Water Nymph”

It resembled something akin to a skinny hippopotamus crossed with a long-legged pig and spent most of the time in the warm, freshwaters of tropical North Africa, but the biggest claim to fame for a newly described member of the Anthracotheres (extinct family of hoofed mammals), is that it has been named after the lead singer of the Rolling Stones.

Sir Mick Jagger is famous for his big mouth and lips and it seems these are traits he shared with Jaggermeryx naida, which roamed the ancient waterways of Egypt some 19 million years ago (Burdigalian faunal stage of the Miocene epoch).  The name means “Jagger’s water nymph” and we will avoid any references to the Rolling Stone’s front man and his age.

Jaggermeryx naida

Views of the Jaw Fragment of J. naida

Various views of the fossil material.

Various views of the fossil material.

Picture credit: Greg Gunnell (Duke Lemur Centre)

The picture above shows views of the jawbone fragment that led to the identification of this new species of hoofed mammal.  Picture 1 is a view of inside of the jaw (medial), picture 2 shows the same fossil but in lateral view (outside of the jaw) and picture 3 shows the same fossil viewed from the top (dorsal) view.

Ancient Hoofed Mammal

An international team of scientists have been carefully excavating an area of the Qattara Depression (north-western Egypt).   Although the Qattara depression forms part of the Libyan desert today and it is famous for its dunes, salt lakes and arid terrain (it was the setting of the 1958 film “Ice Cold in Alex”), back in the Miocene epoch, much of North Africa was covered in lush swamplands and a number of Anthracotheres thrived.

The paper reporting on the excavation of the Anthracothere specimens has been published this week in the academic “Journal of Paleontology”, (note the American form of spelling).

The site, known as Wadi Moghra has provided the highest diversity of Anthracothere fossils when compared to other locations of Miocene aged deposits.  A spokesperson from Everything Dinosaur commented that at least six different types of these hoofed mammals are now known to have been living in this part of the world nineteen million years ago.

Associate Professor Ellen Miller, of Wake Forest University (North Carolina), one of the co-authors of the scientific paper stated:

“We imagine its lifestyle was like that of a water deer, standing in water and foraging for plants along the river bank.”

 Ellen Miller (Wake Forest University) at Work Examining Fossil Material at the Site

Often palaeontology can involve lying down on the job.

Often palaeontology can involve lying down on the job.

 Picture credit: Wake Forest University

The “Jagger” Connection

The site has revealed a number of vertebrate fossils, not just artiodactyls (even-toed mammals), but the fossilised remains of catfish, turtles and a number of water birds have also been found.   The fossil jaw fragments showed a series of eight holes.  These have been interpreted as having been the sites of large nerves that fed information back to the brain from the lower lip and snout.  Jaggermeryx naida probably had large lips (just like the Rolling Stones singer) and a super-sensitive lower lip and snout.  These adaptations would have enabled this herbivore to forage for nutritious plants in the muddy waters of this ancient Egyptian landscape.

A sensitive lower lip and snout.

A sensitive lower lip and snout.

Picture credit: Wake Forest University

Fossils Found in 1918

Associate Professor Miller added that the first fossils of this animal that they have described were found back in 1918, but at the time it was not recognised that these fossils represented a new type of Anthracothere.

She commented that when the team asked fellow researchers had they seen similar looking bones elsewhere:

“When people kept telling us no, we knew we were really on to something.  They’ve [Jaggermeryx naida] have been around for nearly a century, we just didn’t know what they were.”

Mick Jagger is not the first celebrity to have a prehistoric animal named after him.   Many famous people have been honoured in this way.  For example, last summer (June 2013), Everything Dinosaur reported on the fact that an Eocene lizard had been named after Jim Morrison (lead singer of the Doors).  Earlier in 2013, we reported on a new type of Cambrian arthropod being named after the actor Johnny Depp.

To read about the Eocene lizard named after Jim Morrison: Rock Star Honoured.

To read about the Cambrian invertebrate named in honour of Johnny Depp: Film Star Honoured by Having Arthropod Fossil Named After Him.

12 09, 2014

Spinosaurus “Four Legs are Better than Two”?

By |2023-03-16T13:58:25+00:00September 12th, 2014|Dinosaur and Prehistoric Animal News Stories, Dinosaur Fans, Main Page, Palaeontological articles|3 Comments

Spinosaurus – Steps into the Spotlight (Once Again)

And so, the long awaited paper that re-evaluates the fossil data on the Spinosaurus genus and specifically S. aegyptiacus was published in the academic journal “Science” yesterday.  Time to open a new chapter on this, one of the most enigmatic, mysterious and bizarre of all the known Theropoda.  Since the paper’s submission in the summer, there has been a lot of debate in scientific circles with regards to what this new study will show.  The paper’s title “Semi-aquatic Adaptations in a Giant Predatory Dinosaur”, is almost an understatement, when this is contrasted with the lurid headlines we have seen from a large number of media outlets.

Re-examining What We Thought We Knew About Spinosaurus

In very brief summary, the dedicated team of international researchers have re-assessed the known fossil material on Spinosaurus.  They have been able to track down the location in Morocco from which a number of Spinosaurus bones were excavated and sold via a fossil dealer.  The team have then re-examined this site and found further material.  Their efforts has led to a considerable re-think in terms of what this animal looked like and how it moved.  This new study interprets Spinosaurus as a sixteen-metre- plus dinosaur, that considered itself more at home in the water than on land.  Although capable of terrestrial locomotion, unlike every other large theropod, a new rendering sees Spinosaurus as an obligate quadruped.  Here is a meat-eating dinosaur that walked on all fours.

A Semi-Aquatic Obligate Quadruped – Spinosaurus

Very much at home in the water.

Very much at home in the water.

Picture credit: Davide Bonadonna, Nizar Ibrahim, Simone Maganuco

Spinosaurus

In the picture above, a web-footed Spinosaurus pursues a prehistoric swordfish, known as Onchopristis.  Earlier studies and research based on other members of the Spinosauridae suggest that fish may have made up a substantial proportion of their diet.  Instead of perching on the river bank, attempting to claw fish out of the water like some form of giant, prehistoric Grizzly bear, an ecological niche trumpeted by ourselves to the CGI team helping with the rendering of Spinosaurus for an episode of the BBC television series “Planet Dinosaur” back in 2011, this latest interpretation goes a lot further.

Beyond “Planet Dinosaur” – The Transformation of Spinosaurus aegyptiacus

From paddler to swimming the "evolving" image of Spinosaurus.

From paddler to swimming the “evolving” image of Spinosaurus.

Picture credit: BBC

Building Up a New Picture

Having re-visited what records and remaining photographs that exist of the original Stromer material excavated from the Western desert of Egypt around a 100 years ago, the dedicated research team then set about mapping previously known Moroccan finds including jaw bone fossils that had been discovered in the mid 1970s.  To this eclectic mix they added information obtained from the fossils from the newly “rediscovered” Moroccan site, which itself makes up what is now known as the neotype for Spinosaurus aegyptiacus.

A neotype is a specimen that is deemed to represent a species in the absence of the holotype material that has either been lost or destroyed.  Add a pinch of material not known from the Spinosaurus genus but described from related animals baryonychids, spinosaurids and so forth, combined with a soupcon of inferred parts of the anatomy as the bones are not known at all in the fossil record and you have a “composite” view of the animal.

The Latest Interpretation of Spinosaurus (S. aegyptiacus)

Life-size reconstruction and supplemental figure

Life-size reconstruction and supplemental figure.

Picture credit: Davide Bonadonna (top) Ibrahim et al (bottom)

The illustration (top), depicts Spinosaurus as a dinosaur that walked on four legs, in this new study the centre of gravity is positioned further forward, the pelvic girdle is estimated to have been much smaller and the hind limbs with their robust but very short femur  reflect the adaptations of a paddler more than that of a bipedal walker.

The picture below, referred to by a colleague as the “Spinosaurus colour chart” is a figure from the scientific paper’s supplementary data.  The colour coded bones illustrate the composite nature of this digital reconstruction.

The “Spinosaurus Colour Chart” Key

RED = the neotype fossils (FSAC-KK 11888)

ORANGE = the original bones from Stromer’s expeditions

YELLOW = isolated fossil material ascribed to Spinosaurus spp. from the same geological Formation as the neotype (Kem Kem Formation)

GREEN = scaled up bones derived from better known spinosaurids

BLUE = additions to help complete the skeleton based on no known fossils but derived from adjacent bones in the digital restoration

Applauding the Efforts of an International Research Team

We at Everything Dinosaur applaud the efforts of the international team responsible for this new reconstruction.  A revaluation of the known Spinosaurus fossil material has been long overdue and this is the first time that palaeontologists have been able to relocate the bones from a private fossil collection to the actual site where they were excavated.  We commend the team for their perseverance.

Taking a Different Perspective

However, as with all good science, a number of counterpoints have already been made.

Scott Hartman, addresses these concerns in his web log: There’s Something Fishy About Spinosaurus.

Scott, with a background in anatomy, and an expert in skeletal reconstructions, makes a number of excellent points in his article.

Spinosaurus

The dinosaur referred to as Spinosaurus aegyptiacus was one of the last of the Spinosauridae.  There is a British connection to this story.  One of the spinosaurids used in the comparative study was Baryonyx (B. walkeri).  When this dinosaur, whose bones were found in a Surrey clay pit, was formally described back in 1986 it was depicted as a semi-aquatic dinosaur, fish scales found in the body cavity suggested that fish made up at least a portion of its diet.

Commenting on the New Research

Commenting on this new research, Dean Lomax, (Honorary Visiting Scientist: School of Earth, Atmospheric and Environmental Sciences, The University of Manchester) and author of the recently published “Dinosaurs of the British Isles” which includes extensive information on the Baryonyx fossil finds, stated:

“The new discovery is very interesting as it potentially confirms what had been suspected for quite some time, that Spinosaurus lived a semi-aquatic lifestyle.”

For further information on the book “Dinosaurs of the British Isles” by Dean Lomax and Nobumichi Tamura, which includes some fantastic skeletal drawings by Scott Hartman visit: Siri Scientific Press.

This new paper, marks a new chapter in the story of Spinosaurus, but it’s not the end of the story that’s for sure.  Ironically, although Stromer originally depicted S. aegypticacus as a biped, we recall that in the distant past (the 1970s), Spinosaurus had previously been thought of as a dinosaur that walked on all fours.

An Illustration of Spinosaurus from 1976

Spinosaurus as a terrestrial quadruped.

Spinosaurus as a terrestrial quadruped.

Picture credit: Giovanni Caselli (from the book “The Evolution and the Ecology of the Dinosaurs” by L. B. Halstead)

We suspect there are going to be a few more twists and turns in the Spinosaurus story.

11 09, 2014

What Happens when an Ichthyosaur Dies?

By |2023-03-16T13:53:49+00:00September 11th, 2014|Dinosaur and Prehistoric Animal News Stories, Dinosaur Fans, Main Page|0 Comments

Scientists Explore the Miniature Ecosystem Created by an Ichthyosaur Carcase

It has been known for some time that when cetaceans (whales and dolphins) die and their corpses settle on the seabed, the carcase can sustain a diverse ecosystem for many years, even decades with the largest individuals.  Palaeontologists had long suspected that the corpses of marine reptiles that patrolled the seas of the world long before the whales evolved, would have played a similar role, but until now this area of marine reptile research had not been that thoroughly investigated.

Studying Decay

Stepping up to this challenge, scientists from the Natural History Museum (London) and the Centre for Research in Earth Sciences (Plymouth University) set about mapping the evidence preserved on the fossilised bones and surrounding matrix of an ichthyosaur skeleton found in southern England.

The team concluded that although there was evidence for a succession of community feeding phases, phases which are very similar to those found in association with cetacean remains deposited in shallow water, the fossilised communities differed from those associated with whale carcases deposited in deep water environments.  One phase, consisting of the establishment of a community feeding on inorganic compounds such as methane and sulphides (known as the “sulphophilic phase”) seemed to be absent according to this fossil study.

Exploring the “After Life” of an Ichthyosaur

Ichthyosaurus Model (Carnegie Collectibles)

Ichthyosaurus model (Carnegie Collectibles).

Picture credit: Everything Dinosaur/Safari Ltd

Ichthyosaur

Ichthyosaurs were a very diverse group of marine reptiles that evolved in the Early Triassic and survived up until the Late Cretaceous (Olenikian faunal stage of the Early Triassic to Turonian faunal stage of the Late Cretaceous).  Although, ichthyosaurs had the same basic, streamlined body plan, a number of families are now recognised and these reptiles, only distantly related to the Dinosauria are regarded by many palaeontologists as amongst the best adapted of all the reptiles to a marine existence.

The specimen studied was a highly disarticulated Ophthalmosaurus fossil, from Dorset.  The fossil represents a three-metre-long individual from the upper part of the Ringstead Clay Member of the Sandsfoot Formation, Late Oxfordian faunal stage.  We estimate that this specimen is approximately 157-156 million years old (Jurassic).  The carcase came to rest on a shallow sea bed, the bones became scattered over an area of several square metres before final burial.  The break-up of the skeleton was probably caused by a combination of scavenging and the action of currents, possibly high energy water flows as a result of storm activity.

Trace Fossil Evidence

The researchers identified a wealth of trace fossil evidence indicating feeding on the carcase by scavengers as well as evidence of organisms grazing on the bones themselves.  Marks made by the teeth of fish were identified and the “star-shaped” feeding scratches from the ichnospecies Gnathichnus pentax were found.

An ichnospecies is an organism only known from trace fossil evidence. The strange five-pointed, star shapes etched over many of the fossilised reptile bones are very similar to the patterns made by living sea urchins with their five-toothed feeding apparatus.  Scientists have interpreted these star-shaped patterns on the bones as evidence of grazing by a prehistoric sea-urchin (echinoid), G. pentax. It would have been feeding on mats of algae that had formed.

Trace Fossil Evidence on the Ophthalmosaurus Bones

Rib showing sharp, narrow grooves (white arrows) probably left by the scavenging action of small fishes.

Rib showing sharp, narrow grooves (white arrows) probably left by the scavenging action of small fishes.

Picture credit: Nature Communications

The picture above shows a close up of an Ophthalmosaurus rib bone showing signs of having been scavenged by small fish. The arrows indicate potential bite mark evidence (scale bar = 0.5cm).

Evidence of Grazing on the Fossilised Bones by Echinoids (Sea Urchins)

G. pentax ichnospecies on a fragment of fossil rib.

G. pentax ichnospecies on a fragment of fossil rib.

Picture credit: Nature Communications

The photograph above (b) shows the tell-tale grazing pattern of the ichnospecies Gnathichnus pentax on one of the fossilised bones (scale bar = 1cm).

A Close up of the Star-Shaped Feeding Pattern

Scale bar = 0.2cm.

Scale bar = 0.2cm.

Picture credit: Nature Communications

The Mesozoic Equivalent of a Whale Fall Incident

Commenting on the study, Richard Twitchett (Natural History Museum), one of the research paper’s co-authors stated:

“This is the first time anybody has described the ecological succession in the Mesozoic equivalent of a whale fall in detail.”

When an extant whale dies and its body sinks to the seabed,  scientists have identified a number of distinct and sometimes overlapping ecological phases.  First, scavengers remove the flesh and other soft tissues from the carcase.  Then snails and the charmingly named bone-eating, snot-flower worms (Osedax genus) feast on the blood and the fluids from the decomposing remains.

The last phase sees the hard parts such as the bones themselves being digested by microbes which feed on the fats (lipids) stored in the bones.  Tube worms live off the microbes and the likes of the bone-eating snot-flower worms persist.

Feeding by Scavengers

When the insides of the Ophthalmosaurus’s bones were examined under powerful microscopes further evidence of feeding by scavengers was found.  A number of tiny, fossilised molluscs were discovered.  These are associated with the same ecological community phase now associated with the bone-eating, snot-flower worms.  However, there was no sign of the “sulphophilic stage”, in which oxidised inorganic compounds such as sulphides and methane, derived from microbial activity as the fats inside the bones are broken down are consumed by a chemosynthetic community.  The chemosynthetic community found on the carcases of whales in deep water (greater than two hundred metres) consists of free-living bacteria and bivalves (for example, the genus Beggiatoa).

Evidence of Microscopic Scavenging Activity within the Fossilised Bone

Close-up of the bioeroded area where microborings are perpendicular to the external bone surface

Close-up of the bioeroded area where microborings are perpendicular to the external bone surface

Picture credit: Nature Communications

The picture above (e) shows a highly magnified section of ichthyosaur bone (ib) and the adjacent micrite rim represents a fine-grained calcite layer formed by the action of microbes boring into the substrate.

Mats of Microbes

Instead, the ichthyosaur’s bones were colonised by mats of microbes which attracted sea urchins and other grazing invertebrates.  The bones also became the home for a number suspension feeders, such as oysters that cemented themselves to the remains of the skeleton, forming a miniature “reef phase” as described by the scientists.  The remains were eventually buried entombing the remnants of the ecosystem that had been established to exploit the last resources from the dead animal.

When large cetaceans perish, a reef phase is less likely to occur as most carcases settle in deeper water and the ubiquitous bone-eating snot-flowers rapidly destroy the skeleton.  The researchers conclude that shallow-water ichthyosaur falls do provide a range of ecosystem opportunities to other organisms similar to the ones seen in studies of dead whales and dolphins.  However, it seems such shallow water corpses do not support any specialised chemosynthetic communities.

10 09, 2014

School Site Updates

By |2023-03-16T13:47:04+00:00September 10th, 2014|Educational Activities, Press Releases, Teaching|0 Comments

Everything Dinosaur’s School Site Updates

Busy days at Everything Dinosaur, not only are team members starting the first of the autumn term’s teaching assignments this morning, but there are further updates being added to the company’s bespoke teaching website.  Everything Dinosaur provides a lot of educational resources and support to schools, home educators, teaching assistants and museums.  The teaching website was set up so as to provide a dedicated support site about dinosaurs and fossils to assist those involved in education.

Everything Dinosaur

Teaching tips, articles, resources and free downloads.

Teaching tips, articles, resources and free downloads.  Everything Dinosaur supplies lots of dinosaur themed educational resources.

Picture credit: Everything Dinosaur

Helping Teachers

Amongst the free downloads, teaching plans, schemes of work and other resources, Everything Dinosaur team members have been busy writing bespoke articles about how dinosaurs and fossils can help in education on the site’s teaching blog.  Trouble is, we have hundreds of articles and even more ideas for new articles so this task is monumental.  Still we shall persevere and new articles are being posted up all the time.

To visit Everything Dinosaur’s extensive range of dinosaur themed educational resources: Dinosaur Themed Educational Resources.

9 09, 2014

New Species of Titanosaur Named – Rukwatitan bisepultus

By |2023-03-16T13:45:00+00:00September 9th, 2014|Dinosaur and Prehistoric Animal News Stories, Dinosaur Fans, Main Page|0 Comments

Rukwatitan bisepultus – A Rare African Giant

Titanosaurs are a bit like buses, you wait for ages and then two of them come along together.  No sooner did we complete our synopsis on the research on the colossal Dreadnoughtus schrani, a newly described titanosaur from south-western Patagonia, then we have the opportunity to discuss another new species, this time from Africa.  This new titanosaur, named Rukwatitan bisepultus may not be quite as big as the newly described Dreadnoughtus but we at Everything Dinosaur estimate that fossils excavated from a hazardous cliff face in a steep quarry represent a dinosaur that was around ten metres long, or possibly much bigger.

Comparisons with the fossil bones from the Malawisaurus indicate that this titanosaur could have exceeded sixteen metres in length.  This herbivore would have been able to survey its floodplain home from a height of approximately four metres.

Rukwatitan bisepultus

An Artist’s Impression of the New Titanosaur (Rukwatitan bisepultus)

New genus of Titanosaur described from Tanzania.

New genus of titanosaur described from Tanzania.

Picture credit: Mark Witton

Studying Titanosaurs

But with titanosaurs, size isn’t everything.  Rukwatitan may not be a record breaker in terms of its body mass but its discovery is perhaps more significant than the fossils of the South American giants.  This is only the fourth genus of titanosaur discovered in Africa* and the palaeontologists at the University of Ohio, who excavated the fossils out of the cliff over two field seasons, are confident that their find will help scientists to understand more about the global distribution and the diversity of the titanosaurids as well as helping to piece together more data on the evolution of sub-Saharan dinosaurs.

A Silhouette of Rukwatitan bisepulutus Showing Fossils Found

Scale bar = 1 metre

Scale bar = 1 metre

Picture credit: Eric Gorscak (Ohio University)

The picture above shows a bauplan of the new titanosaur and the position of the fossil bones that were found in relation to the body plan.

Titanosaurs are wide-bodied sauropods that probably evolved sometime in the Late Jurassic and survived until the Cretaceous mass extinction event.  They are the only sauropods known to have survived into the Late Cretaceous, but only in South America did these animals make up a significant proportion of the herbivorous megafauna, elsewhere, the ornithopods dominated.  When compared to other types of Sauropoda, titanosaurs tended to have wider bodies, due to the more robust and larger pectoral area (chest).  The limbs were strong and stocky, often the front limbs were longer than the hind limbs.

The spinal column was more flexible than in diplodocids, perhaps helping them to rear up more easily.  The heads were small, proportionately smaller than other types of sauropod.  Titanosaurs were geologically widespread and their fossils have been found on all the continents including Antarctica.  A number of sub-families have been identified and some of the titanosaurids are amongst the largest, terrestrial vertebrates known to science.

To read about the Antarctica fossil find (2011): Titanosaurs of the Antarctic.

The fossils were found in the Rukwa Rift Basin area of south-western Tanzania (hence the genus name).  Scientists from Ohio University in collaboration with several other universities have carried out a number of excavations from the Red Sandstone Group deposits, that form part of the Galula Formation.  Fossils of turtles, crocodilians and primitive mammals have also been found in the formation, as well as dinosaur remains.  The fossil bearing strata is believed to have been laid down approximately 100 million years ago (Late Albian faunal stage of the Cretaceous).

The Fossils were Excavated from a Steep Cliff Face

The fossils were excavated from a steep cliff.

The fossils were excavated from a steep cliff.

Picture credit: Patrick O’Connor (Ohio University)

The vertebrates associated with the Galula Formation have shown some unique anatomical features indicating that the floodplain environment which is represented by these sandstone deposits may have been separated from other parts of Gondwana, permitting a unique fauna to evolve.  Last year, scientists from Ohio University reported the discovery of a new type of crocodilian (Rukwasuchus yajabalijekundu) that was different from other crocodilians found in deposits of the same geological age but from further north.

Some of the Fossils Exposed after Excavation

Fossil material exposed.

Fossil material exposed.

Picture credit: Ohio University

One of the authors of the scientific paper, published in the “Journal of Vertebrate Palaeontology”, Patrick O’Connor (Professor of Anatomy at Ohio University) stated:

“There may have been certain environmental features, such as deserts, large waterways and/or mountain ranges that would have limited the movement of animals and promoted the evolution of regionally distinct faunas.  Only additional data on the faunas and the palaeo-environments from around the continent will let us further test such hypotheses.”

Two Caudal Vertebrae (Tail bones) from the Site

A number of caudal vertebrae including several articulated vertebrae have been found.

A number of caudal vertebrae including several articulated vertebrae have been found.

Picture credit: Ohio University

* Team members have had a go at naming the four genera of African titanosaurs currently described, here we go:

  1. The basal titanosaur from Tanzania (Upper Tendaguru Formation) – Janenschia robusta (Late Jurassic)
  2. The Lithostrotian titanosaur from Malawi (unknown formation) Malawisaurus dixeyi (Cretaceous)
  3. The basal Lithostorian titanosaur? Rukwatitan bisepulutus (described above)
  4. The Lithostrotian titanosaur from Egypt (Bahariya Formation) Paralititan stromeri (Late Cretaceous)

To read the acclaimed article written by Everything Dinosaur on the newly discovered titanosaur Dreadnoughtus: New Titanosaur from South-Western Patagonia.

8 09, 2014

Time Running Out To Enter Dinosaur T-shirt Contest

By |2023-03-16T13:40:31+00:00September 8th, 2014|Dinosaur Fans, Everything Dinosaur News and Updates, Main Page, Press Releases|1 Comment

Name the Dinosaur Competition

As we celebrate the introduction of Everything Dinosaur’s range of childrens’ dinosaur themed T-shirts, our competition to think of a suitable name for one of the dinosaurs featured in the new designs, really seems to have taken off.  We have lots of entries so far, but there is still time to enter (competition closes on Friday 19th September).  Please note this competition is now closed.

One of the designs on our dinosaur T-shirts features a baby T. rex.  He (or she), looks very cute and the competition is simple – come up with a name for this little critter.

The Range of Exclusive Everything Dinosaur T-shirts

The first of the dinosaur themed T-shirts from Everything Dinosaur.

The first of the dinosaur themed T-shirts from Everything Dinosaur.

Picture credit: Everything Dinosaur

Give a name to our baby dinosaur and we will send one lucky winner a dinosaur T-shirt from our new range* for their junior palaeontologist to wear!

Think of a name for me to win a T-shirt!

Think of a name for me to win a T-shirt!

To enter the contest for a chance to win a dinosaur themed T-shirt for your own young dinosaur fan, all you have to do is “Like” Everything Dinosaur’s FACEBOOK page, then comment on the picture of the baby dinosaur design on the red T-shirt (pictured above).  Our friendly baby dinosaur needs a name, what can you come up with?

To enter, just visit Everything Dinosaur on FACEBOOK  and “like” our page and remember to leave a suggested name by making a comment under the “apprentice dinosaur” image.

Everything Dinosaur on Facebook

Click the logo to visit our Facebook page and to give our page a "like".

Click the logo to visit our Facebook page and to give our page a “like”.

Everything Dinosaur on FACEBOOK: “LIKE” Our Facebook Page and Enter Competition

We will draw the lucky winner at random and the name caption competition closes on Friday 19th September 2014.  Good luck!

To view Everything Dinosaur’s range of dinosaur and prehistoric animal themed clothing click on the picture below:

Dinosaur and Prehistoric Animal Pjs, T-shirts, Sweatshirts etc.

Exclusive to Everything Dinosaur

Exclusive to Everything Dinosaur.

Picture credit: Everything Dinosaur

To view the range of dinosaur T-shirts and other dinosaur themed clothing for children: Dinosaur Themed Clothes and Dinosaur T-shirts.

*The range of T-shirt sizes available to the prize winner

Competition Winner can choose from these sizes.

Competition winner can choose from these sizes.

* please note the red “Appentice Palaeontologist T-shirt is only available in sizes up to 9 yrs-11 yrs, chest size 82 cm.

Terms and Conditions of Name Our Baby Dinosaur Competition

Automated entries are not permitted and will be excluded from the draw.

Only one entry per person.

The prize is non-transferable and no cash alternative will be offered.

The Everything Dinosaur name a baby dinosaur caption competition runs until Friday 19th September 2014.

Winner will be notified by private message on Facebook or email.

Prize includes postage and packing.

For full terms and conditions email: Contact Everything Dinosaur.

PLEASE NOTE THIS COMPETITION IS NOW CLOSED.

8 09, 2014

Ancient Fossil helps Decode Horse Evolution

By |2023-03-16T13:38:21+00:00September 8th, 2014|Key Stage 3/4|Comments Off on Ancient Fossil helps Decode Horse Evolution

Oldest DNA Sequence Known to Science from Horse Fossils

An international research team have been able to retrieve a substantial portion of the genome of an ancestral horse that roamed northern Canada nearly three quarters of a million years ago.  This study will help scientists to understand more about Equine evolution and dramatically extends the known limit of DNA survival in the fossil record.  Genetic material, DNA fragments has been recovered from the frozen bodies of long extinct animals before.

Ancient Fossil

DNA has been recovered from Siberian Woolly Mammoths (Mammuthus primigenius) and those of Cave Bears (Ursus spelaeus).  These fossils too, date from the Pleistocene Epoch, however, the horse DNA has been recovered from fossils more than half a million years older than other material successfully studied to date.

What is DNA?

DNA (deoxyribonucleic acid) is a complex chemical molecule that carries the genetic information for an organism.  It contains the information required for the development and functioning for all known types of living organism and many types of viruses.  This hereditary information consists of a code made up of four chemical bases, these bases are A (adenine), G (guanine), C (cytosine) and T (thymine).  These DNA chemical bases join up with each other, adenine always with thymine (A with T) and guanine with cytosine (G with C), these are called base pairs.

The order, or sequence of these base pairs determines the information available for the development and functioning of the organism, this is often referred to as the genetic code.  The genome is the term used to describe the coding and non-coding material of an organism.

The Structure of DNA (The Double Helix)

The double helix of DNA.

Rosalind Franklin helped to unravel the structure of the double helix of DNA.  Here is an illustration of the double helix.

Picture credit: U.S. National Library of Medicine (additional labelling by Everything Dinosaur)

The fossil used in the DNA study was a fifteen centimetre long leg bone, excavated from permafrost at a location in the western part of the Yukon (Canada).  The bone is estimated to be around 735,000 years of age.  Limb bones, as they are more robust and thicker than other bones, have a greater likelihood of preserving organic material.

To read more about this research: Ancient Fossil Horse Helps Decode Equine Evolution.

Go to Top