All about dinosaurs, fossils and prehistoric animals by Everything Dinosaur team members.

Fossil finds, new dinosaur discoveries, news and views from the world of palaeontology and other Earth sciences.

4 01, 2023

New Study Shows Plant-eating Dinosaurs Ate Plants Differently

By |2024-01-02T14:02:28+00:00January 4th, 2023|Dinosaur and Prehistoric Animal News Stories, Main Page, Palaeontological articles|0 Comments

Newly published research demonstrates that plant-eating, ornithischian dinosaurs had different ways of tackling the plants that made up their diet. Scans of the skulls of five, herbivorous dinosaurs, all members of the bird-hipped group (Ornithischia), were used to create three-dimensional models of the skull, teeth and jaws. These computer models were then subjected to a series of stress tests measuring the jaw muscles and calculating bite forces to help palaeontologists understand how different feeding strategies evolved in the Dinosauria.

Life-size Psittacosaurus replica.
A model of the dinosaur called Psittacosaurus. A skull model of this Early Cretaceous dinosaur was tested to determine the impact of bite force stresses on the bones. This data provided the scientists with information on different feeding strategies within the Ornithischia. Picture credit: Everything Dinosaur.

Picture credit: Everything Dinosaur

Plant-eating Dinosaurs

It is thought that the very earliest dinosaurs were carnivorous. However, quite early in their evolutionary history, the Dinosauria diversified and new forms with different diets (herbivory and omnivory) evolved.

In a recently published study (December 2022), analysis of dinosaur tooth shape suggested that the ancestors of the huge, herbivorous sauropods were meat-eaters, whilst many groups of plant-eating, ornithischian dinosaurs were ancestrally omnivorous.

To read Everything Dinosaur’s blog post about this research: Tooth Shape Helps Shape Dinosaur Diet.

Earliest Representatives of Major Ornithischian Groups

The skull and jaw muscles of some of the earliest representatives of major families within the Ornithischia were studied namely:

  • Heterodontosaurus – Heterodontosauridae family from the Early Jurassic.
  • Lesothosaurus – A basal ornithischian known from the Early Jurassic, possibly part of the early ornithopod lineage or perhaps an ancestor of armoured dinosaurs (Thyreophora).
  • Scelidosaurus – An early member of the Thyreophora (Early Jurassic).
  • Hypsilophodon – Regarded as a basal ornithopod (Early Cretaceous).
  • Psittacosaurus – A basal member of the Marginocephalia clade (Early Cretaceous) which includes horned dinosaurs (ceratopsids) and the bone-headed dinosaurs (pachycephalosaurs).

Writing in the academic journal “Current Biology”, the research team, which included scientists from the University of Birmingham, the London Natural History Museum and Bristol University, conclude that these herbivorous dinosaurs evolved very different ways of tackling their diet of vegetation.

Plant-eating dinosaurs ate plants differently.
Different feeding strategies in ornithischian dinosaurs. Computerised tomography was used to create models of skulls and these models were subjected to bite force stress tests to assess how these dinosaurs fed. Picture credit: David Button.

Skull Morphology and Jaw Musculature Reveal Different Feeding Strategies

Using computer models and finite element analysis to assess the impact of stress on the skull and bite forces the team discovered that Heterodontosaurus had disproportionately large jaw muscles in relation to the size of its skull. It had a powerful bite. As it was able to generate a higher bite force this would have helped it to consume tough plants. Scelidosaurus had a similar bite force, but relatively smaller jaw muscles compared to the size of its skull. Hypsilophodon, in contrast, had proportionately smaller jaw muscles, it could bite more efficiently but with less force.

Co-author of the study, Dr Stephan Lautenschlager (University of Birmingham), commented:

“We discovered that each dinosaur tackled the problems posed by a plant-based diet by adopting very different eating techniques. Some compensated for low eating performance through their sheer size, whilst others developed bigger jaw muscles, increased jaw system efficiency, or combined these approaches. Although these animals looked very similar, their individual solutions to the same problems illustrates the unpredictable nature of evolution.”

Compared to Birds and Crocodilians

The jaw muscles were reconstructed on the model skulls using extant archosaurs as templates (birds and crocodilians). Finite element analysis was then conducted to determine the potential bite force of each dinosaur. Finite element analysis involved dividing the skull into thousands of individual parts (called elements). The bite force these muscles can generate is calculated based on their size and arrangement.

Heat maps showed the different stress levels generated throughout each skull as the biting motion was simulated. The results revealed that although all of these dinosaurs were eating plants, each type of dinosaur had a different way of doing it.

Professor Paul Barrett (London Natural History Museum), explained that it was essential for palaeontologists to understand how dinosaurs evolved to feed on plants in so many ways. This diversity in feeding strategies helps to explain how these animals came to be the dominant primary consumers in terrestrial food chains for millions of years.

Lead author of the study, Dr David Button (University of Bristol) explained:

“When we compared the functional performance of the skull and teeth of these plant-eating dinosaurs, we found significant differences in the relative sizes of the jaw muscles, bite forces and jaw strength between them. This showed that these dinosaurs, although looking somewhat similar, had evolved very different ways to tackle a diet of plants.”

Scelidosaurus
An illustration of the Early Jurassic armoured dinosaur Scelidosaurus. A study of this dinosaur’s skull morphology and jaw muscles has led to palaeontologists gaining a new perspective on the feeding strategies of early armoured dinosaurs. Picture credit: Everything Dinosaur.

Dr Button went onto add:

“This research helps us understand how animals evolve to occupy new ecological niches. It shows that even similar animals adopting similar diets won’t always evolve the same characteristics. This highlights how innovative and unpredictable evolution can be.”

These differences in feeding strategy identified in this research demonstrates that each of these types of ornithischian dinosaur evolved a distinct solution to feeding on plants.

Everything Dinosaur acknowledges the assistance of a media release from the University of Birmingham in the compilation of this article.

The scientific paper: “Multiple pathways to herbivory underpinned deep divergences in ornithischian evolution” by David J. Button, Laura B. Porro, Stephan Lautenschlager, Marc E. H. Jones and Paul M. Barrett published in Current Biology.

2 01, 2023

Sauropod Dinosaurs Did Not Have Supersonic Tails

By |2023-01-03T07:45:19+00:00January 2nd, 2023|Adobe CS5, Dinosaur and Prehistoric Animal News Stories, Dinosaur Fans, Main Page, Palaeontological articles|0 Comments

A recent study published in the academic journal “Scientific Reports” refutes the idea that some long-necked herbivores had supersonic sauropod tails. The controversial idea that some dinosaurs could lash their tails like a whip creating a supersonic crack as the tail travelled faster than the speed of sound has been refuted in newly published research. Instead, the researchers suggest that the tail of diplodocids such as Apatosaurus, Brontosaurus and Diplodocus could still play a role in defence, producing a painful blow to deter an attacker. It is also suggested that these long, whip-like tails could have been used in intraspecific combat.

Apatosaurus scale drawing.
Scale drawing of Apatosaurus (A. ajax). Note the long, whip-like tail. New research suggests that these long tails could not be used to create a “crack” as they broke the sound barrier. Picture credit: Everything Dinosaur.

Picture credit: Everything Dinosaur

Supersonic Sauropod Tails

A sauropod clade, the Flagellicaudata are characterised by their extremely long tails. This clade includes the Diplodocidae family and the closely related Dicraeosauridae. Although complete fossil sauropod tails are extremely rare, palaeontologists have a good idea of the anatomy of a typical diplodocid tail. It consisted of approximately eighty caudal vertebrae, that gradually decrease in size and morphological complexity towards the tail tip. There are approximately ten larger posterior vertebrae, followed by forty or so intermediate bones with finally around thirty progressively smaller rod-like caudal vertebrae.

Earlier studies had suggested that the tail could be whipped, and the tip would travel so fast (in excess of 500 metres per second), this action would break the sound barrier and produce a loud sound. This speedy tail would cause a significant injury should it come into contact with another dinosaur.

However, this new study used three-dimensional models and computer analysis to assess the stress on the bones, ligaments and soft tissues. They concluded that the maximum tip velocity generated would be around thirty metres a second, nowhere near the 330 metres per second required to break the sound barrier.

Eofauna Diplodocus scale model
The Eofauna Diplodocus carnegii model measures around 60 cm in length and stands 11 cm tall. It is a 1/40th scale model. Most of the model’s length is made up of the long tail. Diplodocids are members of the Flagellicaudata clade.

The picture (above) shows the recently introduced Eofauna Scientific Research Diplodocus carnegii replica. When shown in lateral view, the extremely long tail can be seen.

To view the range of models and figures in the Eofauna series: Eofauna Scientific Research Models.

An Effective Weapon

Whilst the researchers conclude that the effect of friction on the musculature and aerodynamic drag would prevent the tail tip from reaching a speed capable of breaking the sound barrier, the pressure applied by the terminal section would not be enough to break bones or lacerate dinosaur skin, but it could still deliver a painful blow.

In summary, the scientists suggest that sauropod tail use remains speculative, these tails could have been used in intraspecific combat, or perhaps as a weapon against predators. Similarly, the use of the tail as a tactile element to retain herd cohesion is equally plausible.

The scientific paper: “Multibody analysis and soft tissue strength refute supersonic dinosaur tail” by Simone Conti, Emanuel Tschopp, Octávio Mateus, Andrea Zanoni, Pierangelo Masarati and Giuseppe Sala published in Scientific Reports.

2 01, 2023

The Evolution of the Backbone

By |2022-12-30T14:49:20+00:00January 2nd, 2023|Adobe CS5, Dinosaur and Prehistoric Animal News Stories, Main Page, Palaeontological articles|0 Comments

The evolutionary development of the vertebral column has been extensively researched. Numerous fossil specimens have been studied as scientists pursue a greater understanding of the evolution of the backbone. Recently, a new scientific paper has been published in “Scientific Reports” that outlines the evolutionary development of ossification patterns in four-legged vertebrates.

Research from the Museum für Naturkunde

The study was undertaken by scientists from the Museum für Naturkunde (Berlin, Germany). Antoine Verrière and his colleagues were able to reconstruct the patterns of how the bones in the vertebral column formed in the ancestor to all land vertebrates based on a large dataset compiled from studies of extant and extinct vertebrates. The dataset also included new information on the spine of Mesosaurus tenuidens, widely regarded as the first reptile to adapt to an aquatic existence, back in the Permian some 300 million years ago.

Evolution of the Backbone.
Understanding the evolution of ossification patterns in the backbones of four-legged vertebrates. Picture credit: Verrière and Fröbisch.

The Evolution of the Backbone

Lead author of the paper, Antoine Verrière explained that M. tenuidens had a long snout and a powerful tail that propelled it through the water. It inhabited an inland sea that once existed in the southern region of the supercontinent Pangaea.

The palaeontologist added:

“On some rare juvenile specimens, we observed that the neural arches, the spines sitting on top of the main part of a vertebra, were closing from head to tail as the animals grew, much like a zipper. We wanted to understand how this pattern would fit in the evolutionary history of land vertebrates, but quickly realised there was surprisingly little information available. So, we decided to investigate this ourselves!”

Four Major Developmental Patterns in Backbones of Amniotes

The research team looked at four of the major developmental patterns in the backbones of amniotes (mammals, reptiles and birds):

  • The ossification of the centrum (the main body of a vertebra).
  • The ossification of paired neural arches.
  • The fusion of the initially forming paired neural arch elements into one spine.
  • The fusion of neural arches with the centrum, also called neurocentral fusion.

Statistical analysis was used to model how these different patterns changed from the Permian through to today, their work roughly covering the evolutionary history of land-living vertebrates excluding amphibians. With this research the team could reconstruct the patterns in the common ancestor to all land vertebrates.

Co-author of the study, Professor Jörg Fröbisch (Museum für Naturkunde) commented:

“What surprised us the most was that these patterns appear to have been relatively stable for the last 300 million years. Modern and extinct vertebrates are enormously diverse in terms of their body shapes and lifestyles and the elements of their vertebral columns are organised in complex units that differ greatly between species. Nevertheless, the ossification patterns were much more conservative than was expected from the great morphological diversity.”

Edmontosaurus skeleton.
Duck-billed dinosaur on display showing the vertebral column. Despite vertebrates having extremely diverse body shapes and complex spines the observed ossification patterns were much more conservative than expected. Picture credit: Everything Dinosaur.

Picture credit: Everything Dinosaur

Some Deviations Identified

Although the patterns studied show relative stability through deep geological time, some deviations were identified. Notably, birds, mammals, and members of the Squamata Order (snakes and lizards) each evolved their own specific modes of vertebral ossification, which differ from the ancestral condition in amniotes. Yet again, within these groups, the patterns were also surprisingly stable.

Fellow co-author Professor Nadia Fröbisch (Museum für Naturkunde) explained:

“Ostriches and seagulls, for instance, have very different anatomies and lifestyles, but their vertebral columns ossify in similar ways. This shows that some changes can be observed between the major lineages of land vertebrates, but within each of the main lineages, spine development remained rather stable again.”

This study demonstrates how studying modern animals alongside their ancient ancestors can provide a much deeper understanding of the evolutionary development of key anatomical structures.

Everything Dinosaur acknowledges the assistance of a media release from the Museum für Naturkunde (Berlin) in the compilation of this article.

The scientific paper: “Regionalization, constraints, and the ancestral ossification patterns in the vertebral column of amniotes” by Antoine Verrière, Nadia B. Fröbisch and Jörg Fröbisch published in Scientific Reports.

31 12, 2022

Favourite and Most Popular Blog Posts of 2022 (Part 2)

By |2024-01-02T06:45:55+00:00December 31st, 2022|Adobe CS5, Dinosaur and Prehistoric Animal News Stories, Dinosaur Fans, Main Page, Press Releases|0 Comments

Today, we continue our look back at the most popular blog posts that Everything Dinosaur published this year. Yesterday, we reviewed January through to June, and now we turn our attention to the favourite blog posts from the last six months.

Heatwaves in England made working outside extremely arduous and palaeontologists had to deal with the oppressive heat as they explored a fossil site exposed in a farmer’s field in Gloucestershire. The dedicated team unearthed some spectacular specimens including some superb Jurassic fish fossils.

Fossil fish skull
A three-dimensional fish skull (Pachycormus spp.) from a limestone concretion found at Court Farm. Note the small ammonite located in association with the skull. Picture credit: Dean Lomax.

To read the blog post: Fossil Fish Down on the Farm.

Giant Sauropod

It may have been hot in England, but we suspect Portugal in August was hotter still as a team of researchers struggled to unearth the fossilised remains of a sauropod dinosaur that had been discovered in the back garden of a house in Leiria district (central Portugal).

Favourite Blog Posts.
Portugal sauropod discovery. Picture credit: Instituto Dom Luiz (Faculty of Sciences of the University of Lisbon, Portugal).

To read Everything Dinosaur’s blog post: Giant Sauropod in the Garden.

In September, Everything Dinosaur blogged about “April”, not the month but a remarkable Tenontosaurus fossil skeleton nicknamed “April” that was being restored ready for a new dinosaur gallery at the Manchester Museum.

The fossilised remains of April the Tenontosaurus laid out in anatomical position.
The fossilised remains of April the Tenontosaurus laid out in anatomical position. Picture credit: The University of Manchester.

The refurbished Manchester Museum complete with “April” is due to open in February 2023.

To read about “April” the Tenontosaurus: “Bring Back “April”.

Pterosaur Research

The first accurate skeletal reconstruction of a fossil specimen discovered in Scotland more than a century ago, provided new information on the evolutionary history of pterosaurs. Our blog about the research went live early in October.

An early ancestor of the Pterosauria
A tiny reptile measuring approximately 20 cm in length, Scleromochlus is now thought to be an early ancestor of the Pterosauria. Picture credit: Gabriel Ugueto.

To read our post: Unravelling the Ancestry of the Pterosauria.

November was a time to blow our own trumpet to some extent as Everything Dinosaur won the Excellence in Customer Service Award. We posted about our success and included a Papo green Styracosaurus dinosaur model in the photograph that showed our trophy.

Everything Dinosaur wins award
A Papo green Styracosaurus dinosaur model poses in front or the South Cheshire Chamber of Commerce trophy for excellence in customer service awarded to Everything Dinosaur. Picture credit: Everything Dinosaur.

We felt honoured and humbled to win this prestigious award. For the full story: Everything Dinosaur Wins Award.

To visit the Papo section of Everything Dinosaur’s award-winning website: Papo Dinosaur Models.

Favourite Blog Posts

Drawing our two-part feature on favourite blog posts of 2022 to a close, we come to December and in this month we blogged about new Rebor replicas, future PNSO dinosaurs, Beasts of the Mesozoic replicas and CollectA figures. However, just as we began 2022 looking at research highlighting stomach contents in a long extinct animal we returned to that subject in December, covering the discovery of a small mammal’s foot found inside the body cavity of a Microraptor (M. zhaoianus). This study, led by Dr David Hone (Queen Mary University of London), demonstrated that Microraptor was a generalist – feeding on a wide variety of small creatures including mammals.

Dinosaur eating a mammal.
A life reconstruction showing the Microraptor with the mammal’s foot. Picture credit: Ralph Attanasia.

To read our blog post about the Microraptor discovery: Microraptor Eating a Mammal.

Team members at Everything Dinosaur look forward to producing more blog posts in 2023.

To visit Everything Dinosaur’s website: Everything Dinosaur.

30 12, 2022

Favourite and Most Popular Blog Posts of 2022 (Part 1)

By |2024-01-02T06:46:13+00:00December 30th, 2022|Adobe CS5, Dinosaur and Prehistoric Animal News Stories, Dinosaur Fans, Main Page, Press Releases|0 Comments

At this time of year, Everything Dinosaur looks back on their favourite blog posts of 2022. The weblog posts that team members have created, and we list the favourite articles of 2022. This is quite a challenge given the enormous number of subjects that we have covered in the last twelve months. Our blog looks at advances in the Earth sciences, fossil finds, dinosaur research, new prehistoric animal models, provides book reviews and covers all sorts of stories and features associated with dinosaur models and model collecting.

So, without further fuss here is a countdown of our favourite and most popular articles from January to June 2022.

Favourite Blog Posts

In January, team members posted up several videos of the recently introduced Rebor Smilodon replicas. These popular models, proved to be excellent figures to highlight on Everything Dinosaur’s YouTube channel. These short videos gave viewers the opportunity to see these exciting models in close detail.

Favourite Blog Posts
The Rebor Smilodon (Ice Age) colour variant featured in a short Everything Dinosaur video. Our blog posts that linked to short product review videos proved very popular with model fans. Picture credit: Everything Dinosaur.

To view the Rebor Ice Age Smilodon video showcase: Rebor Smilodon Ice Age Video Showcase.

To visit Everything Dinosaur’s YouTube channel (please subscribe): Everything Dinosaur on YouTube.

Crocodile Eats Dinosaur

February may have been the shortest month, but there was no shortage of interesting fossil discoveries to write about. One of the most popular articles dealt with the discovery of a crocodile fossil from Australia that preserved the remains of its last meal – a small dinosaur.

Confractosuchus sauroktonos attacks a juvenile ornithopod.
A life reconstruction of Confractosuchus sauroktonos capturing the juvenile ornithopod. Picture credit: Dr Matt White/Australian Age of Dinosaurs Museum.

Predator prey interactions are extremely rare in the fossil record, and this is the first documented instance of a crocodilian eating a dinosaur from Australia.

The world of palaeontology was rocked in March when a paper was published postulating that the species known as Tyrannosaurus rex was actually three! The paper caused a lot of controversy and debate as the fossils of arguably the most iconic dinosaur of all were divided into three.

To read our blog post: Are There Three Tyrannosaurus Species?

Remarkable Bryozoans

Back in time we went in April, all the way back to the Cambrian. A newly published paper proposed that the bryozoans, an ancient group of miniature, aquatic invertebrates had their origins in the Early Cambrian. Remarkably, these tiny animals are an important constituent of modern marine ecosystems and are largely unchanged over 500 million years.

Bryozoan fossil from the Early Cambrian.
Protomelission gatehousei from the Cambrian Wirrealpa Limestone, South Australia. Picture credit: Zhang et al.

“Prehistoric Planet”

In May, the spectacular five-part, television documentary series “Prehistoric Planet” aired on Apple+ TV. Everything Dinosaur team members were given the opportunity to view all the programmes and this series has gone onto win many accolades and awards. Our congratulations to all those involved. “Prehistoric Planet” was one of the television highlights of the year.

We blogged about the programmes, and we think this series was far superior to the big film that came out later in the summer – “Jurassic World Dominion”.

The “White Rock Spinosaurid”

As we moved into the middle of the year, news broke of yet another theropod dinosaur discovery from the Isle of Wight. Fragmentary fossils found on the island, hinted at a ten-metre-plus spinosaurid that could represent the largest carnivorous dinosaur discovered to date in Europe.

Illustration of White Rock spinosaurid.
Illustration of White Rock spinosaurid. Picture credit: University of Southampton/Anthony Hutchings.

Nicknamed the “White Rock spinosaurid”, after the geological layer in which the fossils were found, the discovery demonstrated that even in areas that have been extensively mapped, explored and visited by thousands of holidaymakers every year, the rocks still hold surprises. Better still, a researcher on the paper Dr Darren Naish, played a pivotal role in “Prehistoric Planet” acting as one of the scientific advisors.

To read our blog post: Huge Carnivorous Dinosaur from the Isle of Wight.

Favourite Blog Posts

That’s the first part of our two-part feature listing our favourite weblog posts of 2022. Tomorrow, we shall take a look at the blog posts from July through to the end of the year.

To visit Everything Dinosaur’s award-winning website: Everything Dinosaur.

29 12, 2022

A New Dwarf Nodosaurid Called Patagopelta

By |2024-02-08T08:38:09+00:00December 29th, 2022|Dinosaur and Prehistoric Animal News Stories, Dinosaur Fans, Main Page, Palaeontological articles, Photos/Pictures of Fossils|0 Comments

In today’s blog post we look at the dwarf nodosaurid Patagopelta (P. cristata), which was formally named and described earlier this month.

A new, very small, armoured dinosaur has been named and described from fossils found in Argentina. The dinosaur which measured around 2 to 2.3 metres in length (based on the dimensions of the femur), suggests that some members of the Nodosauridae in Gondwana became smaller in the Late Cretaceous, perhaps as armoured dinosaurs in South America were under evolutionary pressure from other ornithischians and titanosaurs.

Dwarf nodosaurid Patagopelta
A life reconstruction of the newly described, dwarf nodosaurid from Argentina (Patagopelta cristata). Picture credit: Gabriel Diaz Yantén.

Dwarf Nodosaurid Patagopelta

Fragmentary remains of Late Cretaceous armoured dinosaurs are known from Chile and Argentina, but little work had been undertaken to assess these specimens and to review their phylogeny and taxonomic relationship with other members of the Ankylosauria clade from North America and elsewhere in the world.

Writing in the ” Journal of Systematic Palaeontology”, the researchers led by Facundo Riguetti, a CONICET doctoral fellow, reassessed the known ankylosaur material in conjunction with some other recently found fossils and, as a result, they were able to establish a new nodosaurid species from bones and a single tooth found in sediments of the Allen Formation (Campanian–Maastrichtian) in Salitral Moreno, Río Negro Province (northern Patagonia).

Patagopelta cristata

The dinosaur’s genus name translates as “Patagonian shield” whilst the trivial name derives from the Latin for crest – a reference to the diagnostic crests on both the anterior surface of the femur and the lateral osteoderms of the cervical rings.

Dr Riguetti commented:

“The importance of the study lies in the fact that Patagopelta is the first species of Ankylosauria described for the continental territory of Argentina, which fills the existing gap for this group and adds a new thyreophoran to the very few incomplete and indeterminate remains known for our country from this type of ornithischian dinosaur.”

Dwarf nodosaurid Patagopelta (views of the femur).
The right femur of Patagopelta (specimen number MPCA-SM-1), in A, anterior, B, posterior, C, lateral, D, medial, E, proximal and F, distal views. As the fragmentary left femur would have been the same size it is thought the femora came from a single animal. Other fossil remains represent several individuals. Abbreviations: fh, femoral head; fn, fibular notch; ft, fourth trochanter; gtr, greater trochanter; it, interwoven texture; lc, lateral condyle; le, lateral epicondyle; li (atr), linea intermuscular (associated to the anterior trochanter); lmca, linea muscularis caudalis; lmcr, linea muscularis cranialis; mc, medial condyle. Scale bar = 10 cm. Picture credit: Riguetti et al.

The Right Femur

The best-preserved fossil element is the right femur, which is complete and shows typical anatomical characteristics associated with the Nodosauridae. This bone along with the distinctive cervical osteoderms led to the erection of this new species. As the femur is only 25 cm in length and bone histology suggests an adult animal, the researchers conclude that Patagopelta was a dwarf form of armoured dinosaur.

Co-author Sebastián Apesteguía, a CONICET researcher, explained:

“For an armoured dinosaur, Patagopelta is extremely small. Due to the size of the femur, only 25 centimetres in length, we estimate that the animal must have been between two and three meters long, while, in general, ankylosaurs are medium-sized or large animals, with an average length of between four and five metres.”

A Faunal Exchange Across the Americas

Although it is thought that the Nodosauridae evolved in the Northern Hemisphere, towards the end of the Cretaceous (Campanian – Maastrichtian), a land bridge existed between North America and South America that permitted a faunal exchange. Titanosaurs migrated north, which explains why fossils of titanosaurs such as Alamosaurus occur in the USA. Ornithischian dinosaurs such as hadrosaurs and nodosaurids moved south.

Alamosaurus scale drawing.
Scale drawing of Alamosaurus. A giant titanosaur known from North America that is probably descended from titanosaurs that roamed South America. Picture credit: Everything Dinosaur.

The image above shows a typical Late Cretaceous titanosaur, for models of Late Cretaceous dinosaurs including titanosaurs and armoured dinosaurs: CollectA Prehistoric Life Models.

Sebastián Apesteguía added:

“That is why in South America we only expect to find animals like Patagopelta in rocks from the Late Cretaceous, just before the global extinction of the dinosaurs took place.”

Dwarfism in Late Cretaceous South American Thyreophora

The size of Patagopelta along with the recently described Stegouros (Soto-Acuña et al, 2021)*, from southernmost Chile, suggests that armoured dinosaurs in South America may have gradually become smaller. This trait is not known in members of the Thyreophora described from other parts of the world. Palaeontologists have speculated that perhaps competition from titanosaurs and the migration of hadrosaurs into South America might have led to armoured dinosaurs adapting to different ecological niches to avoid competition. By being smaller these animals needed fewer resources than larger, contemporaneous herbivorous dinosaurs.

It has also been suggested that the geology of Patagonia where the fossils of Patagopelta were found might provide a clue to the dwarfism. Geologists are aware of several Late Cretaceous marine transgressions in the region. This might have led to the establishment of an island archipelago with dinosaurs living on these small islands gradually become smaller due to a scarcity of resources (the “island rule”).

Tracks of Dwarf Ankylosaurs

Members of the Patagopelta research team had previously described tracks of dwarf ankylosaurs, possibly affected by similar circumstances, preserved in Upper Cretaceous deposits in Bolivia.

*To read Everything Dinosaur’s 2021 article about the discovery of Stegouros: New Armoured Dinosaur from Chile.

Everything Dinosaur acknowledges the assistance of a media release from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) in the compilation of this article.

The scientific paper: “A new small-bodied ankylosaurian dinosaur from the Upper Cretaceous of North Patagonia (Río Negro Province, Argentina)” by Facundo Riguetti, Xabier Pereda-Suberbiola, Denis Ponce, Leonardo Salgado, Sebastián Apesteguía, Sebastián Rozadilla and Victoria Arbour published in the Journal of Systematic Palaeontology.

23 12, 2022

New Study Suggests Tooth Shape Helps Shape Dinosaur Diet

By |2024-02-08T08:39:48+00:00December 23rd, 2022|Adobe CS5, Dinosaur and Prehistoric Animal News Stories, Dinosaur Fans, Main Page, Palaeontological articles|0 Comments

Recently published research examining tooth shape in early members of the Dinosauria has provided new information on dinosaur diet. The very earliest known dinosaurs included carnivores, herbivores as well as omnivores. Early dinosaurs were already developing adaptations to exploit a wide variety of feeding strategies.

Early dinosaur diet investigated.
Buriolestes (top left), a member of the Sauropodomorpha is a carnivore whilst the geologically younger sauropodomorph Thecodontosaurus is thought to have been herbivorous (top right). Lesothosaurus (bottom), an early member of the Ornithischia, is thought to be an omnivore. Picture credit: Gabriel Ugueto.

Picture credit: Gabriel Ugueto

Dinosaur Diet

Writing in the academic journal “Science Advances”, the scientists from the University of Bristol developed computer models to test the function and bite force of the teeth of a variety of early dinosaurs. These results were then compared with the data from extant lizards so that the diet could be inferred. The study shows that many groups of plant-eating ornithischian dinosaurs were ancestrally omnivorous and the ancestors of the huge sauropods, dinosaurs such as Apatosaurus, Diplodocus, Dreadnoughtus and Argentinosaurus were carnivores.

The scientists conclude that the ability of the Dinosauria to diversify their diets early in their evolution probably explains their evolutionary and ecological success.

Studying the Earliest Dinosaurs

The Dinosauria dominated terrestrial ecosystems for much of the Mesozoic. However, their origins and how they came to out compete other tetrapods during the Middle to Late Triassic remains the subject of intense debate. Over a few million years, the dinosaurs seem to have rapidly diversified and moved from being essential “bit-part” players in terrestrial ecosystems dominated by other types of archosaur and synapsid to becoming the dominant group.

Analysis of trackways discovered in the Southern Alps suggests a link between extensive faunal turnover leading to the dominance of the Dinosauria and the Carnian Pluvial Episode (CPE), a period of major climate change and a shift in the types of flora.

The diversification of the dinosaurs.
The diversification of the dinosaurs coincides with the Carnian Pluvial Episode (CPE). Picture credit: Everything Dinosaur.

Picture credit: Everything Dinosaur

To read more about this research into the impact of the Carnian Pluvial Episode on terrestrial ecosystems: Dinosaurs – In with a Bang and Out with a Bang.

A Wide Diversity of Different Skull and Tooth Shapes

Commenting on the implications of this study, lead author Dr Antonio Ballell stated:

“Soon after their origin, dinosaurs start to show an interesting diversity of skull and tooth shapes. For decades, this has made palaeontologists suspect that different species were already experimenting with different kinds of diets. They have compared them to modern lizard species and tried to infer what they ate based on the similarities in their teeth.”

Tooth morphology yields data on dinosaur diet.
Dinosaur skull shape and tooth morphology mapped over time. The three main dinosaur lineages, Sauropodomorpha, Ornithischia and Saurischia are represented from the Late Triassic to the Early Jurassic. Sauropodomorphs that were ancestral to the giant plant-eaters such as Apatosaurus and Dreadnoughtus were originally carnivorous, whilst ornithischian dinosaurs regarded as predominately herbivorous, started off as omnivores. Picture credit: Ballell, Benton and Rayfield.

Dr Ballell, based at the University’s School of Earth Sciences added:

“We investigated this by applying a set of computational methods to quantify the shape and function of the teeth of early dinosaurs and compare them to living reptiles that have different diets. This included mathematically modelling their tooth shapes and simulating their mechanical responses to biting forces with engineering software.”

A Plateosaurus dinosaur model.
A rearing Plateosaurus. The study confirmed that the large, Late Triassic Plateosaurus was in all probability a herbivore.

The Plateosaurus replica (above), is part of the CollectA not-to-scale range of prehistoric animal models.

To view this range: CollectA Prehistoric Life Models and Figures.

Predicting Dinosaur Diet

Co-author of the paper, Professor Mike Benton explained:

“With this battery of methods, we were able to numerically quantify how similar early dinosaurs were to modern animals, providing solid evidence for our inferences of diets. Theropod dinosaurs have pointy, curved and blade-like teeth with tiny serrations, which behaved like those of modern monitor lizards. In contrast, the denticulated teeth of ornithischians and sauropodomorphs are more similar to modern omnivores and herbivores, like iguanas.”

Innovative Machine Learning

This innovative research used machine learning models to group the earliest dinosaurs into different diet categories based on their jaw mechanics and tooth shape. For example, Thecodontosaurus, a dinosaur which roamed the Triassic archipelago where Bristol now stands, had teeth well adapted for feeding on plants.

Senior co-author, Bristol University’s Professor Emily Rayfield commented:

“Our analyses reveal that ornithischians, the group that includes many plant-eating species like the horned dinosaurs, the armoured ankylosaurs and the duck-billed dinosaurs started off as omnivores. Another interesting finding is that the earliest sauropodomorphs, ancestors of the veggie long-necked sauropods like Diplodocus, were carnivores. This shows that herbivory was not ancestral for any of these two lineages, countering traditional hypotheses, and that the diets of early dinosaurs were quite diverse.”

The Evolution of Different Diets

The researchers postulate that the ability for the Dinosauria to evolve different dietary habits may have played a key role in the ecological and evolutionary success.

Everything Dinosaur acknowledges the contribution of a media release from Bristol University in the compilation of this article.

The scientific paper: “Dental form and function in the early feeding diversification of dinosaurs” by Antonio Ballell, Michael J. Benton and Emily J. Rayfield published in Science Advances.

21 12, 2022

An Amazing Fossil – Dinosaur Eating a Mammal

By |2024-02-08T08:40:39+00:00December 21st, 2022|Dinosaur and Prehistoric Animal News Stories, Dinosaur Fans, Main Page, Palaeontological articles, Photos/Pictures of Fossils|0 Comments

The first, definitive proof of a dinosaur eating a mammal has been found. A foot of a tiny, mouse-sized mammal has been discovered inside the body cavity of the feathered theropod Microraptor (M. zhaoianus). Previously, other Microraptor specimens from Lower Cretaceous rocks of northern China had revealed the fossilised remains of a fish, a primitive bird and a lizard associated with the body cavity. Palaeontologists now know that this crow-sized predator also ate mammals. This is the first record of a dinosaur consuming a mammal.

Dinosaur eating a mammal.
A life reconstruction showing the Microraptor with the mammal’s foot. Picture credit: Ralph Attanasia.

Mammal Foot Found Inside Ribcage

A new study led by Dr David Hone (Queen Mary University of London), published in the academic “Journal of Vertebrate Paleontology”, documents the first known incident of a dinosaur having eaten a mammal.

Microraptor is a genus of small, dromaeosaurid which lived in the forests of northern China around 120 million years ago (Early Cretaceous). The remarkable fossils found in Liaoning Province have enabled palaeontologists to build up a detailed picture of life in these ancient, dinosaur-dominated forests.

Researchers have also identified a wide variety of mammals and mammaliamorphs that co-existed with the dinosaurs and pterosaurs. Together these creatures make up a diverse ecosystem known as the Jehol biota

To read Everything Dinosaur’s blog post from 2021 describing the remarkable diversity of vertebrates associated with the Jehol biota: The Jehol Biota.

Microraptor had long feathers on its arms and legs and was, very probably arboreal, gliding from tree to tree, hunting out small animals to eat.

Mammal pes found in association with Microraptor fossil.
The mammal foot inside the Microraptor fossil. Picture credit: Alex Dececchi.

Spotting the Fossilised Foot

The Microraptor specimen was first described twenty-two years ago, but the preserved remains of the tiny foot had been overlooked. Professor Hans Larsson of McGill University in Montreal spotted what others had missed – the remains of another animal inside the Microraptor’s rib cage. In collaboration with Dr Hone, and colleagues from Canada, China and the USA, a paper describing this remarkable discovery has now been published.

Dinosaur eating a mammal.
A close-up view of the mammal’s foot inside the Microraptor skeleton. The foot bones have been outlined in red. Picture credit: Alex Dececchi with additional annotation by Everything Dinosaur.

Dinosaur Eating a Mammal

The mammal foot is almost complete and belonged to a very small animal, approximately the size of a modern house mouse. Examination of the bones suggest that it was one that predominantly lived on the ground and was not well adapted for climbing trees, making it an interesting prey choice for the mainly arboreal Microraptor.

Previous studies have revealed other Microraptor specimens containing the remains of a bird, a lizard and a fish. This specimen of the species Microraptor zhaoianus demonstrates that Microraptor also consumed small mammals. This little feathered dinosaur was a generalist, consuming a wide variety of prey.

It is not certain if the dromaeosaurids in question had directly preyed upon and eaten these animals or found them already dead and had scavenged them (or a mixture of both) but the mammal at least falls into the range of typical prey size predicated for a predator the size of Microraptor.

Dinosaur eating a mammal.
An extreme close-up view of the mammal pes (foot) inside the fossil of Microraptor. Picture credit: Alex Dececchi.

Dr Hone’s co-authors on the paper include Dr Alex Dececchi, Mount Marty College (USA), Dr Corwin Sullivan at the Department of Biological Sciences, University of Alberta, and Professor Xu Xing at the Institute of Vertebrate Palaeontology and Palaeoanthropology, Beijing.

A Significant Fossil Discovery

Commenting on the significance of this fossil discovery, Dr David Hone stated:

“It’s so rare to find examples of food inside dinosaurs so every example is really important as it gives direct evidence of what they were eating.

Dr Hone from the University’s School of Biological and Behavioural Sciences added:

“While this mammal would absolutely not have been a human ancestor, we can look back at some of our ancient relatives being a meal for hungry dinosaurs. This study paints a picture of a fascinating moment in time – the first record of a dinosaur eating a mammal – even if it isn’t quite as frightening as anything in Jurassic Park.”

Co-author of the study, Dr Alex Dececchi, from Mount Marty College, commented:

“The great thing is that, like your housecat which was about the same size, Microraptor would have been an easy animal to live with but a terror if it got out as it would hunt everything from the birds at your feeder to the mice in your hedge or the fish in your pond.”

Everything Dinosaur acknowledges the assistance of a media release supplied by Dr David Hone in the compilation of this article.

The scientific paper: “Generalist diet of Microraptor zhaoianus included mammals” by Hone, D.W.E., Dececchi, T.A., Sullivan, C., Xu, X. and Larsson, H.C.E. published in the Journal of Vertebrate Paleontology.

Correction

This is not the first recorded incidence of a dinosaur consuming a mammal. The press release, although provided by the appropriate authorities, had failed to recognise evidence cited in an earlier scientific paper.

16 12, 2022

New Research Suggests Dinosaur Success Linked to Climate Change

By |2024-02-08T08:42:28+00:00December 16th, 2022|Adobe CS5, Dinosaur and Prehistoric Animal News Stories, Dinosaur Fans, Main Page|0 Comments

The evolution of different types of herbivorous Triassic dinosaurs was helped by climate change and this played a key role in their rise to dominance of terrestrial ecosystems during the Mesozoic. Writing in the academic journal “Current Biology”, the researchers, which include Professor Richard Butler (University of Birmingham), postulate that it was climate change rather than competition that played a key role in the ascendancy of the Dinosauria.

Triassic dinosaurs.
Some of the diverse terrestrial life associated with Gondwana in the Late Triassic. North-western Argentina, a large dicynodont (background) disturbs a small theropod dinosaur (right), a silesaurid takes flight (centre) along with a cynodont (left). Picture credit: Victor O. Leshyk.

Picture credit: Victor O. Leshyk

Triassic Dinosaurs

The scientists conclude that global climate change associated with the Triassic-Jurassic mass extinction event, which occurred approximately 201 million years ago, wiped out many types of terrestrial vertebrate and this opened up ecosystems for the Dinosauria to exploit. Large herbivores such as the Aetosauria (eagle lizards) died out and this permitted the Sauropodomorpha to diversify.

Desmatosuchus model.
A model of a typical aetosaur (ruler provides scale). Picture credit: Everything Dinosaur.

Sauropods Benefit

The lizard-hipped sauropods (Sauropodomorpha), in particular, were able to thrive and move into new territories as the Earth grew warmer after the end-Triassic mass extinction event.

Other scientists involved include researchers from Bristol University, the University of São Paulo (Brazil) and the Friedrich-Alexander University Erlangen-Nürnberg (FAU), in Germany.

Computer Generated Models of Global Climate Change

Computer generated models of palaeoclimates and changes to rainfall and temperature gradients were created using the extensive Paleobiology Database as the source of reference materials. The study demonstrated that the long-necked sauropods became more specious and geographically diverse as the planet experienced a period of global warming.

Dr Emma Dunne, a lecturer in palaeontology at FAU and one of the authors of the paper published today stated:

“What we see in the data suggests that instead of dinosaurs being outcompeted by other large vertebrates, it was variations in climate conditions that were restricting their diversity. But once these conditions changed across the Triassic-Jurassic boundary, they were able to flourish.”

Triassic dinosaurs - Lufengosaurus
A scale drawing of Lufengosaurus. Picture credit: Everything Dinosaur.

Picture credit: Everything Dinosaur

The picture (above) shows a scale drawing of Lufengosaurus (L. huenei), from the Early Jurassic of south-western China. According to the researchers, sauropodomorphs like Lufengosaurus benefitted from a warming world permitting these types of herbivorous dinosaur to thrive.

Dr Dunne added:

“The results were somewhat surprising, because it turns out that sauropods were really fussy from the get-go: later in their evolution they continue to stay in warmer areas and avoid polar regions.”

Everything Dinosaur stocks the CollectA Age of Dinosaurs Popular range that contains several replicas of Triassic and Jurassic sauropodomorphs: CollectA Age of Dinosaurs Popular Range.

Professor Richard Butler commented:

“Climate change appears to have been really important in driving the evolution of early dinosaurs. What we want to do next is use the same techniques to understand the role of climate in the next 120 million years of the dinosaur story”.

Everything Dinosaur acknowledges the assistance of a media release from the University of Birmingham in the compilation of this article.

The scientific paper: “Climatic controls on the ecological ascendancy of dinosaurs” by Dunne et al published in Current Biology.

14 12, 2022

Tail Clubs for Social Dominance

By |2023-02-07T09:29:08+00:00December 14th, 2022|Dinosaur and Prehistoric Animal News Stories, Dinosaur Fans, Main Page, Palaeontological articles, Photos/Pictures of Fossils|0 Comments

Ankylosaurs battled each other using their tail clubs for social dominance in intraspecific combat. A recently published scientific paper on the ankylosaur Zuul crurivastator suggests that these armoured dinosaurs used their tail clubs to bash each other as well as to fend off tyrannosaurs.

In the study, published in “Biology Letters” the research team, examined the osteoderms of the remarkably well preserved Zuul crurivastator, an armoured dinosaur described from fossils found in the Coal Ridge Member of the Judith River Formation (Montana). Several of osteoderms along the flanks show signs of damage and healing which led the scientists to postulate that these dinosaurs battled each other with their tail clubs. These fights would have been for social or territorial dominance, perhaps even a result of a “rutting” season fighting for mates – behaviour associated with many mammals today.

Tail clubs for social dominance.
A pair of ankylosaurs (Zuul crurivastator) indulge in some intraspecific combat. Picture credit: Henry Sharpe

Zuul crurivastator

Named and formally described in 2017, Zuul crurivastator (pronounced Zoo-ul cruh-uh-vass-tate-or) roamed the northern part of Laramidia approximately 76 million years ago (Campanian faunal stage of the Late Cretaceous).

To read Everything Dinosaur’s 2017 blog post about the fossil discovery: Zuul – The Destroyer of Shins.

Zuul’s body was covered in bony plates (osteoderms) of different shapes and sizes and the ones along its flanks were particularly large and spiky. Interestingly, the scientists which included lead author and renowned ankylosaur expert Dr Victoria Arbour (Royal British Columbia Museum, Canada), noted that dermal armour near the hips on both sides of the body showed damage that had subsequently healed. This localised, bilaterally symmetrical pathology is speculated to have been caused by ritualised combat rather than wounds inflicted by an attacking theropod dinosaur.

Damaged osteoderms on the Zuul Holotype
Identifying damaged osteoderms in the holotype of Zuul crurivastator. A composite photograph of the skull, first cervical half ring, body block and tail block (top). Fossil material is brown and surrounding rock matrix is grey. Interpretive illustration showing non-pathological osteoderms in white and pathological osteoderms in red (bottom). Picture credit: Arbour, Zanno and Evans.

An Exciting Piece of the Ankylosaur Puzzle

Dr Arbour commented:

“I’ve been interested in how ankylosaurs used their tail clubs for years and this is a really exciting new
piece of the puzzle. We know that ankylosaurs could use their tail clubs to deliver very strong blows to an opponent, but most people thought they were using their tail clubs to fight predators. Instead, ankylosaurs like Zuul may have been fighting each other.”

The genus name honours a fictional monster from the 1984 film “Ghostbusters”, whilst the trivial part of the binomial name translates as “the destroyer of shins”, a nod to the idea that tail clubs were used as defensive weapons to deter attacks from predatory theropod dinosaurs. The substantial club on the end of the three-metre-long tail being used to bash into the lower legs of tyrannosaurs. This new research does not refute the idea that these tail clubs had a role in defence, but based on the pathology seen in the Zuul holotype (specimen number ROM 75860) the scientists propose that sexual selection and intraspecific combat drove their evolution. Many mammals today such as deer, antelope, cattle and sheep have horns and antlers that have evolved for use in battles between members of the same species.

Damaged osteoderms in an ankylosaur.
Details of pathological and non-pathological osteoderm morphology in ROM 75860 (Zuul crurivastator). B2R and E3R are non-pathological flank osteoderms. F3R and D3R are pathological flank osteoderms missing the tips of the apex, and the keratinous sheath has not grown over the tip. D3L is a pathological flank osteoderm missing a large portion of the apex, and the keratinous sheath has overgrown the damaged region. C3L and E3L are pathological flank osteoderms with highly modified morphologies, missing large portions of the trailing posterior edge and with the keratinous sheath covering the damaged region. Picture credit: Arbour, Zanno and Evans.

It had been suggested previously that ankylosaurs may have clubbed each other, and that broken and healed ribs could provide evidence to support this idea. Unfortunately, ankylosaurid skeletons are extremely rare in the fossil record, these animals were not common, even in the Late Cretaceous of North America, where the ecosystem was dominated by other ornithischian dinosaurs such as duck-billed dinosaurs and ceratopsians.

Implications for Ankylosaur Behaviour

The remarkable Zuul fossil skeleton provides palaeontologists with an opportunity to study pathology recorded on the bones and dermal armour.

Co-author Dr David Evans (Curator of Vertebrate Palaeontology at the Royal Ontario Museum) explained:

“The fact that the skin and armour are preserved in place is like a snapshot of how Zuul looked when it
was alive. And the injuries Zuul sustained during its lifetime tell us about how it may have behaved and
interacted with other animals in its ancient environment.”

Tail Clubs for Social Dominance

The researchers conclude that the imposing tail club of Zuul could have been used in defence when needed, but the analysis suggest that sexual selection drove the evolution of this weapon. This finding has consequences for how palaeontologists perceive ankylosaurs. It suggests that these dinosaurs were capable of complex behaviours and that they likely engaged in ritualised combat over mates or for social dominance as inferred in other types of dinosaurs and observed in living mammals and birds.

To view a replica of the armoured dinosaur Zuul and other prehistoric animal models (whilst stocks last): Armoured Dinosaurs and Prehistoric Animal Figures (Wild Safari).

Everything Dinosaur acknowledges the assistance of a media release from the Royal Ontario Museum in the compilation of this article.

The scientific paper: “Palaeopathological evidence for intraspecific combat in ankylosaurid dinosaurs” by Victoria M. Arbour, Lindsay E. Zanno and David C. Evans published in Biology Letters.

Go to Top